/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ // Twisted Edwards curve. The formula is: ax² + y² = 1 + dx²y² import { AffinePoint, BasicCurve, Group, GroupConstructor, validateBasic, wNAF } from './curve.js'; import { mod } from './modular.js'; import * as ut from './utils.js'; import { ensureBytes, FHash, Hex } from './utils.js'; // Be friendly to bad ECMAScript parsers by not using bigint literals // prettier-ignore const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _8n = BigInt(8); // Edwards curves must declare params a & d. export type CurveType = BasicCurve & { a: bigint; // curve param a d: bigint; // curve param d hash: FHash; // Hashing randomBytes: (bytesLength?: number) => Uint8Array; // CSPRNG adjustScalarBytes?: (bytes: Uint8Array) => Uint8Array; // clears bits to get valid field elemtn domain?: (data: Uint8Array, ctx: Uint8Array, phflag: boolean) => Uint8Array; // Used for hashing uvRatio?: (u: bigint, v: bigint) => { isValid: boolean; value: bigint }; // Ratio √(u/v) prehash?: FHash; // RFC 8032 pre-hashing of messages to sign() / verify() mapToCurve?: (scalar: bigint[]) => AffinePoint; // for hash-to-curve standard }; // verification rule is either zip215 or rfc8032 / nist186-5. Consult fromHex: const VERIFY_DEFAULT = { zip215: true }; function validateOpts(curve: CurveType) { const opts = validateBasic(curve); ut.validateObject( curve, { hash: 'function', a: 'bigint', d: 'bigint', randomBytes: 'function', }, { adjustScalarBytes: 'function', domain: 'function', uvRatio: 'function', mapToCurve: 'function', } ); // Set defaults return Object.freeze({ ...opts } as const); } // Instance of Extended Point with coordinates in X, Y, Z, T export interface ExtPointType extends Group { readonly ex: bigint; readonly ey: bigint; readonly ez: bigint; readonly et: bigint; get x(): bigint; get y(): bigint; assertValidity(): void; multiply(scalar: bigint): ExtPointType; multiplyUnsafe(scalar: bigint): ExtPointType; isSmallOrder(): boolean; isTorsionFree(): boolean; clearCofactor(): ExtPointType; toAffine(iz?: bigint): AffinePoint; toRawBytes(isCompressed?: boolean): Uint8Array; toHex(isCompressed?: boolean): string; } // Static methods of Extended Point with coordinates in X, Y, Z, T export interface ExtPointConstructor extends GroupConstructor { new (x: bigint, y: bigint, z: bigint, t: bigint): ExtPointType; fromAffine(p: AffinePoint): ExtPointType; fromHex(hex: Hex): ExtPointType; fromPrivateKey(privateKey: Hex): ExtPointType; } export type CurveFn = { CURVE: ReturnType; getPublicKey: (privateKey: Hex) => Uint8Array; sign: (message: Hex, privateKey: Hex, options?: { context?: Hex }) => Uint8Array; verify: ( sig: Hex, message: Hex, publicKey: Hex, options?: { context?: Hex; zip215: boolean } ) => boolean; ExtendedPoint: ExtPointConstructor; utils: { randomPrivateKey: () => Uint8Array; getExtendedPublicKey: (key: Hex) => { head: Uint8Array; prefix: Uint8Array; scalar: bigint; point: ExtPointType; pointBytes: Uint8Array; }; }; }; // It is not generic twisted curve for now, but ed25519/ed448 generic implementation export function twistedEdwards(curveDef: CurveType): CurveFn { const CURVE = validateOpts(curveDef) as ReturnType; const { Fp, n: CURVE_ORDER, prehash: prehash, hash: cHash, randomBytes, nByteLength, h: cofactor, } = CURVE; const MASK = _2n << (BigInt(nByteLength * 8) - _1n); const modP = Fp.create; // Function overrides // sqrt(u/v) const uvRatio = CURVE.uvRatio || ((u: bigint, v: bigint) => { try { return { isValid: true, value: Fp.sqrt(u * Fp.inv(v)) }; } catch (e) { return { isValid: false, value: _0n }; } }); const adjustScalarBytes = CURVE.adjustScalarBytes || ((bytes: Uint8Array) => bytes); // NOOP const domain = CURVE.domain || ((data: Uint8Array, ctx: Uint8Array, phflag: boolean) => { if (ctx.length || phflag) throw new Error('Contexts/pre-hash are not supported'); return data; }); // NOOP const inBig = (n: bigint) => typeof n === 'bigint' && _0n < n; // n in [1..] const inRange = (n: bigint, max: bigint) => inBig(n) && inBig(max) && n < max; // n in [1..max-1] const in0MaskRange = (n: bigint) => n === _0n || inRange(n, MASK); // n in [0..MASK-1] function assertInRange(n: bigint, max: bigint) { // n in [1..max-1] if (inRange(n, max)) return n; throw new Error(`Expected valid scalar < ${max}, got ${typeof n} ${n}`); } function assertGE0(n: bigint) { // n in [0..CURVE_ORDER-1] return n === _0n ? n : assertInRange(n, CURVE_ORDER); // GE = prime subgroup, not full group } const pointPrecomputes = new Map(); function isPoint(other: unknown) { if (!(other instanceof Point)) throw new Error('ExtendedPoint expected'); } // Extended Point works in extended coordinates: (x, y, z, t) ∋ (x=x/z, y=y/z, t=xy). // https://en.wikipedia.org/wiki/Twisted_Edwards_curve#Extended_coordinates class Point implements ExtPointType { static readonly BASE = new Point(CURVE.Gx, CURVE.Gy, _1n, modP(CURVE.Gx * CURVE.Gy)); static readonly ZERO = new Point(_0n, _1n, _1n, _0n); // 0, 1, 1, 0 constructor( readonly ex: bigint, readonly ey: bigint, readonly ez: bigint, readonly et: bigint ) { if (!in0MaskRange(ex)) throw new Error('x required'); if (!in0MaskRange(ey)) throw new Error('y required'); if (!in0MaskRange(ez)) throw new Error('z required'); if (!in0MaskRange(et)) throw new Error('t required'); } get x(): bigint { return this.toAffine().x; } get y(): bigint { return this.toAffine().y; } static fromAffine(p: AffinePoint): Point { if (p instanceof Point) throw new Error('extended point not allowed'); const { x, y } = p || {}; if (!in0MaskRange(x) || !in0MaskRange(y)) throw new Error('invalid affine point'); return new Point(x, y, _1n, modP(x * y)); } static normalizeZ(points: Point[]): Point[] { const toInv = Fp.invertBatch(points.map((p) => p.ez)); return points.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine); } // We calculate precomputes for elliptic curve point multiplication // using windowed method. This specifies window size and // stores precomputed values. Usually only base point would be precomputed. _WINDOW_SIZE?: number; // "Private method", don't use it directly _setWindowSize(windowSize: number) { this._WINDOW_SIZE = windowSize; pointPrecomputes.delete(this); } // Not required for fromHex(), which always creates valid points. // Could be useful for fromAffine(). assertValidity(): void { const { a, d } = CURVE; if (this.is0()) throw new Error('bad point: ZERO'); // TODO: optimize, with vars below? // Equation in affine coordinates: ax² + y² = 1 + dx²y² // Equation in projective coordinates (X/Z, Y/Z, Z): (aX² + Y²)Z² = Z⁴ + dX²Y² const { ex: X, ey: Y, ez: Z, et: T } = this; const X2 = modP(X * X); // X² const Y2 = modP(Y * Y); // Y² const Z2 = modP(Z * Z); // Z² const Z4 = modP(Z2 * Z2); // Z⁴ const aX2 = modP(X2 * a); // aX² const left = modP(Z2 * modP(aX2 + Y2)); // (aX² + Y²)Z² const right = modP(Z4 + modP(d * modP(X2 * Y2))); // Z⁴ + dX²Y² if (left !== right) throw new Error('bad point: equation left != right (1)'); // In Extended coordinates we also have T, which is x*y=T/Z: check X*Y == Z*T const XY = modP(X * Y); const ZT = modP(Z * T); if (XY !== ZT) throw new Error('bad point: equation left != right (2)'); } // Compare one point to another. equals(other: Point): boolean { isPoint(other); const { ex: X1, ey: Y1, ez: Z1 } = this; const { ex: X2, ey: Y2, ez: Z2 } = other; const X1Z2 = modP(X1 * Z2); const X2Z1 = modP(X2 * Z1); const Y1Z2 = modP(Y1 * Z2); const Y2Z1 = modP(Y2 * Z1); return X1Z2 === X2Z1 && Y1Z2 === Y2Z1; } protected is0(): boolean { return this.equals(Point.ZERO); } negate(): Point { // Flips point sign to a negative one (-x, y in affine coords) return new Point(modP(-this.ex), this.ey, this.ez, modP(-this.et)); } // Fast algo for doubling Extended Point. // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd // Cost: 4M + 4S + 1*a + 6add + 1*2. double(): Point { const { a } = CURVE; const { ex: X1, ey: Y1, ez: Z1 } = this; const A = modP(X1 * X1); // A = X12 const B = modP(Y1 * Y1); // B = Y12 const C = modP(_2n * modP(Z1 * Z1)); // C = 2*Z12 const D = modP(a * A); // D = a*A const x1y1 = X1 + Y1; const E = modP(modP(x1y1 * x1y1) - A - B); // E = (X1+Y1)2-A-B const G = D + B; // G = D+B const F = G - C; // F = G-C const H = D - B; // H = D-B const X3 = modP(E * F); // X3 = E*F const Y3 = modP(G * H); // Y3 = G*H const T3 = modP(E * H); // T3 = E*H const Z3 = modP(F * G); // Z3 = F*G return new Point(X3, Y3, Z3, T3); } // Fast algo for adding 2 Extended Points. // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#addition-add-2008-hwcd // Cost: 9M + 1*a + 1*d + 7add. add(other: Point) { isPoint(other); const { a, d } = CURVE; const { ex: X1, ey: Y1, ez: Z1, et: T1 } = this; const { ex: X2, ey: Y2, ez: Z2, et: T2 } = other; // Faster algo for adding 2 Extended Points when curve's a=-1. // http://hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-4 // Cost: 8M + 8add + 2*2. // Note: It does not check whether the `other` point is valid. if (a === BigInt(-1)) { const A = modP((Y1 - X1) * (Y2 + X2)); const B = modP((Y1 + X1) * (Y2 - X2)); const F = modP(B - A); if (F === _0n) return this.double(); // Same point. Tests say it doesn't affect timing const C = modP(Z1 * _2n * T2); const D = modP(T1 * _2n * Z2); const E = D + C; const G = B + A; const H = D - C; const X3 = modP(E * F); const Y3 = modP(G * H); const T3 = modP(E * H); const Z3 = modP(F * G); return new Point(X3, Y3, Z3, T3); } const A = modP(X1 * X2); // A = X1*X2 const B = modP(Y1 * Y2); // B = Y1*Y2 const C = modP(T1 * d * T2); // C = T1*d*T2 const D = modP(Z1 * Z2); // D = Z1*Z2 const E = modP((X1 + Y1) * (X2 + Y2) - A - B); // E = (X1+Y1)*(X2+Y2)-A-B const F = D - C; // F = D-C const G = D + C; // G = D+C const H = modP(B - a * A); // H = B-a*A const X3 = modP(E * F); // X3 = E*F const Y3 = modP(G * H); // Y3 = G*H const T3 = modP(E * H); // T3 = E*H const Z3 = modP(F * G); // Z3 = F*G return new Point(X3, Y3, Z3, T3); } subtract(other: Point): Point { return this.add(other.negate()); } private wNAF(n: bigint): { p: Point; f: Point } { return wnaf.wNAFCached(this, pointPrecomputes, n, Point.normalizeZ); } // Constant-time multiplication. multiply(scalar: bigint): Point { const { p, f } = this.wNAF(assertInRange(scalar, CURVE_ORDER)); return Point.normalizeZ([p, f])[0]; } // Non-constant-time multiplication. Uses double-and-add algorithm. // It's faster, but should only be used when you don't care about // an exposed private key e.g. sig verification. // Does NOT allow scalars higher than CURVE.n. multiplyUnsafe(scalar: bigint): Point { let n = assertGE0(scalar); // 0 <= scalar < CURVE.n if (n === _0n) return I; if (this.equals(I) || n === _1n) return this; if (this.equals(G)) return this.wNAF(n).p; return wnaf.unsafeLadder(this, n); } // Checks if point is of small order. // If you add something to small order point, you will have "dirty" // point with torsion component. // Multiplies point by cofactor and checks if the result is 0. isSmallOrder(): boolean { return this.multiplyUnsafe(cofactor).is0(); } // Multiplies point by curve order and checks if the result is 0. // Returns `false` is the point is dirty. isTorsionFree(): boolean { return wnaf.unsafeLadder(this, CURVE_ORDER).is0(); } // Converts Extended point to default (x, y) coordinates. // Can accept precomputed Z^-1 - for example, from invertBatch. toAffine(iz?: bigint): AffinePoint { const { ex: x, ey: y, ez: z } = this; const is0 = this.is0(); if (iz == null) iz = is0 ? _8n : (Fp.inv(z) as bigint); // 8 was chosen arbitrarily const ax = modP(x * iz); const ay = modP(y * iz); const zz = modP(z * iz); if (is0) return { x: _0n, y: _1n }; if (zz !== _1n) throw new Error('invZ was invalid'); return { x: ax, y: ay }; } clearCofactor(): Point { const { h: cofactor } = CURVE; if (cofactor === _1n) return this; return this.multiplyUnsafe(cofactor); } // Converts hash string or Uint8Array to Point. // Uses algo from RFC8032 5.1.3. static fromHex(hex: Hex, zip215 = false): Point { const { d, a } = CURVE; const len = Fp.BYTES; hex = ensureBytes('pointHex', hex, len); // copy hex to a new array const normed = hex.slice(); // copy again, we'll manipulate it const lastByte = hex[len - 1]; // select last byte normed[len - 1] = lastByte & ~0x80; // clear last bit const y = ut.bytesToNumberLE(normed); if (y === _0n) { // y=0 is allowed } else { // RFC8032 prohibits >= p, but ZIP215 doesn't if (zip215) assertInRange(y, MASK); // zip215=true [1..P-1] (2^255-19-1 for ed25519) else assertInRange(y, Fp.ORDER); // zip215=false [1..MASK-1] (2^256-1 for ed25519) } // Ed25519: x² = (y²-1)/(dy²+1) mod p. Ed448: x² = (y²-1)/(dy²-1) mod p. Generic case: // ax²+y²=1+dx²y² => y²-1=dx²y²-ax² => y²-1=x²(dy²-a) => x²=(y²-1)/(dy²-a) const y2 = modP(y * y); // denominator is always non-0 mod p. const u = modP(y2 - _1n); // u = y² - 1 const v = modP(d * y2 - a); // v = d y² + 1. let { isValid, value: x } = uvRatio(u, v); // √(u/v) if (!isValid) throw new Error('Point.fromHex: invalid y coordinate'); const isXOdd = (x & _1n) === _1n; // There are 2 square roots. Use x_0 bit to select proper const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit if (!zip215 && x === _0n && isLastByteOdd) // if x=0 and x_0 = 1, fail throw new Error('Point.fromHex: x=0 and x_0=1'); if (isLastByteOdd !== isXOdd) x = modP(-x); // if x_0 != x mod 2, set x = p-x return Point.fromAffine({ x, y }); } static fromPrivateKey(privKey: Hex) { return getExtendedPublicKey(privKey).point; } toRawBytes(): Uint8Array { const { x, y } = this.toAffine(); const bytes = ut.numberToBytesLE(y, Fp.BYTES); // each y has 2 x values (x, -y) bytes[bytes.length - 1] |= x & _1n ? 0x80 : 0; // when compressing, it's enough to store y return bytes; // and use the last byte to encode sign of x } toHex(): string { return ut.bytesToHex(this.toRawBytes()); // Same as toRawBytes, but returns string. } } const { BASE: G, ZERO: I } = Point; const wnaf = wNAF(Point, nByteLength * 8); function modN(a: bigint) { return mod(a, CURVE_ORDER); } // Little-endian SHA512 with modulo n function modN_LE(hash: Uint8Array): bigint { return modN(ut.bytesToNumberLE(hash)); } /** Convenience method that creates public key and other stuff. RFC8032 5.1.5 */ function getExtendedPublicKey(key: Hex) { const len = nByteLength; key = ensureBytes('private key', key, len); // Hash private key with curve's hash function to produce uniformingly random input // Check byte lengths: ensure(64, h(ensure(32, key))) const hashed = ensureBytes('hashed private key', cHash(key), 2 * len); const head = adjustScalarBytes(hashed.slice(0, len)); // clear first half bits, produce FE const prefix = hashed.slice(len, 2 * len); // second half is called key prefix (5.1.6) const scalar = modN_LE(head); // The actual private scalar const point = G.multiply(scalar); // Point on Edwards curve aka public key const pointBytes = point.toRawBytes(); // Uint8Array representation return { head, prefix, scalar, point, pointBytes }; } // Calculates EdDSA pub key. RFC8032 5.1.5. Privkey is hashed. Use first half with 3 bits cleared function getPublicKey(privKey: Hex): Uint8Array { return getExtendedPublicKey(privKey).pointBytes; } // int('LE', SHA512(dom2(F, C) || msgs)) mod N function hashDomainToScalar(context: Hex = new Uint8Array(), ...msgs: Uint8Array[]) { const msg = ut.concatBytes(...msgs); return modN_LE(cHash(domain(msg, ensureBytes('context', context), !!prehash))); } /** Signs message with privateKey. RFC8032 5.1.6 */ function sign(msg: Hex, privKey: Hex, options: { context?: Hex } = {}): Uint8Array { msg = ensureBytes('message', msg); if (prehash) msg = prehash(msg); // for ed25519ph etc. const { prefix, scalar, pointBytes } = getExtendedPublicKey(privKey); const r = hashDomainToScalar(options.context, prefix, msg); // r = dom2(F, C) || prefix || PH(M) const R = G.multiply(r).toRawBytes(); // R = rG const k = hashDomainToScalar(options.context, R, pointBytes, msg); // R || A || PH(M) const s = modN(r + k * scalar); // S = (r + k * s) mod L assertGE0(s); // 0 <= s < l const res = ut.concatBytes(R, ut.numberToBytesLE(s, Fp.BYTES)); return ensureBytes('result', res, nByteLength * 2); // 64-byte signature } const verifyOpts: { context?: Hex; zip215?: boolean } = VERIFY_DEFAULT; function verify(sig: Hex, msg: Hex, publicKey: Hex, options = verifyOpts): boolean { const { context, zip215 } = options; const len = Fp.BYTES; // Verifies EdDSA signature against message and public key. RFC8032 5.1.7. sig = ensureBytes('signature', sig, 2 * len); // An extended group equation is checked. msg = ensureBytes('message', msg); if (prehash) msg = prehash(msg); // for ed25519ph, etc const s = ut.bytesToNumberLE(sig.slice(len, 2 * len)); // zip215: true is good for consensus-critical apps and allows points < 2^256 // zip215: false follows RFC8032 / NIST186-5 and restricts points to CURVE.p let A, R, SB; try { A = Point.fromHex(publicKey, zip215); R = Point.fromHex(sig.slice(0, len), zip215); SB = G.multiplyUnsafe(s); // 0 <= s < l is done inside } catch (error) { return false; } if (!zip215 && A.isSmallOrder()) return false; const k = hashDomainToScalar(context, R.toRawBytes(), A.toRawBytes(), msg); const RkA = R.add(A.multiplyUnsafe(k)); // [8][S]B = [8]R + [8][k]A' return RkA.subtract(SB).clearCofactor().equals(Point.ZERO); } G._setWindowSize(8); // Enable precomputes. Slows down first publicKey computation by 20ms. const utils = { getExtendedPublicKey, // ed25519 private keys are uniform 32b. No need to check for modulo bias, like in secp256k1. randomPrivateKey: (): Uint8Array => randomBytes(Fp.BYTES), /** * We're doing scalar multiplication (used in getPublicKey etc) with precomputed BASE_POINT * values. This slows down first getPublicKey() by milliseconds (see Speed section), * but allows to speed-up subsequent getPublicKey() calls up to 20x. * @param windowSize 2, 4, 8, 16 */ precompute(windowSize = 8, point = Point.BASE): typeof Point.BASE { point._setWindowSize(windowSize); point.multiply(BigInt(3)); return point; }, }; return { CURVE, getPublicKey, sign, verify, ExtendedPoint: Point, utils, }; }