/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
import type { AffinePoint, Group, GroupConstructor } from './curve.js';
import { IField, mod } from './modular.js';
import type { CHash } from './utils.js';
import { abytes, bytesToNumberBE, concatBytes, utf8ToBytes, validateObject } from './utils.js';
/**
* * `DST` is a domain separation tag, defined in section 2.2.5
* * `p` characteristic of F, where F is a finite field of characteristic p and order q = p^m
* * `m` is extension degree (1 for prime fields)
* * `k` is the target security target in bits (e.g. 128), from section 5.1
* * `expand` is `xmd` (SHA2, SHA3, BLAKE) or `xof` (SHAKE, BLAKE-XOF)
* * `hash` conforming to `utils.CHash` interface, with `outputLen` / `blockLen` props
*/
type UnicodeOrBytes = string | Uint8Array;
export type Opts = {
DST: UnicodeOrBytes;
p: bigint;
m: number;
k: number;
expand: 'xmd' | 'xof';
hash: CHash;
};
// Octet Stream to Integer. "spec" implementation of os2ip is 2.5x slower vs bytesToNumberBE.
const os2ip = bytesToNumberBE;
// Integer to Octet Stream (numberToBytesBE)
function i2osp(value: number, length: number): Uint8Array {
if (value < 0 || value >= 1 << (8 * length)) {
throw new Error(`bad I2OSP call: value=${value} length=${length}`);
}
const res = Array.from({ length }).fill(0) as number[];
for (let i = length - 1; i >= 0; i--) {
res[i] = value & 0xff;
value >>>= 8;
}
return new Uint8Array(res);
}
function strxor(a: Uint8Array, b: Uint8Array): Uint8Array {
const arr = new Uint8Array(a.length);
for (let i = 0; i < a.length; i++) {
arr[i] = a[i] ^ b[i];
}
return arr;
}
function anum(item: unknown): void {
if (!Number.isSafeInteger(item)) throw new Error('number expected');
}
// Produces a uniformly random byte string using a cryptographic hash function H that outputs b bits
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.1
export function expand_message_xmd(
msg: Uint8Array,
DST: Uint8Array,
lenInBytes: number,
H: CHash
): Uint8Array {
abytes(msg);
abytes(DST);
anum(lenInBytes);
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.3
if (DST.length > 255) DST = H(concatBytes(utf8ToBytes('H2C-OVERSIZE-DST-'), DST));
const { outputLen: b_in_bytes, blockLen: r_in_bytes } = H;
const ell = Math.ceil(lenInBytes / b_in_bytes);
if (ell > 255) throw new Error('Invalid xmd length');
const DST_prime = concatBytes(DST, i2osp(DST.length, 1));
const Z_pad = i2osp(0, r_in_bytes);
const l_i_b_str = i2osp(lenInBytes, 2); // len_in_bytes_str
const b = new Array(ell);
const b_0 = H(concatBytes(Z_pad, msg, l_i_b_str, i2osp(0, 1), DST_prime));
b[0] = H(concatBytes(b_0, i2osp(1, 1), DST_prime));
for (let i = 1; i <= ell; i++) {
const args = [strxor(b_0, b[i - 1]), i2osp(i + 1, 1), DST_prime];
b[i] = H(concatBytes(...args));
}
const pseudo_random_bytes = concatBytes(...b);
return pseudo_random_bytes.slice(0, lenInBytes);
}
// Produces a uniformly random byte string using an extendable-output function (XOF) H.
// 1. The collision resistance of H MUST be at least k bits.
// 2. H MUST be an XOF that has been proved indifferentiable from
// a random oracle under a reasonable cryptographic assumption.
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.2
export function expand_message_xof(
msg: Uint8Array,
DST: Uint8Array,
lenInBytes: number,
k: number,
H: CHash
): Uint8Array {
abytes(msg);
abytes(DST);
anum(lenInBytes);
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.3
// DST = H('H2C-OVERSIZE-DST-' || a_very_long_DST, Math.ceil((lenInBytes * k) / 8));
if (DST.length > 255) {
const dkLen = Math.ceil((2 * k) / 8);
DST = H.create({ dkLen }).update(utf8ToBytes('H2C-OVERSIZE-DST-')).update(DST).digest();
}
if (lenInBytes > 65535 || DST.length > 255)
throw new Error('expand_message_xof: invalid lenInBytes');
return (
H.create({ dkLen: lenInBytes })
.update(msg)
.update(i2osp(lenInBytes, 2))
// 2. DST_prime = DST || I2OSP(len(DST), 1)
.update(DST)
.update(i2osp(DST.length, 1))
.digest()
);
}
/**
* Hashes arbitrary-length byte strings to a list of one or more elements of a finite field F
* https://www.rfc-editor.org/rfc/rfc9380#section-5.2
* @param msg a byte string containing the message to hash
* @param count the number of elements of F to output
* @param options `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`, see above
* @returns [u_0, ..., u_(count - 1)], a list of field elements.
*/
export function hash_to_field(msg: Uint8Array, count: number, options: Opts): bigint[][] {
validateObject(options, {
DST: 'stringOrUint8Array',
p: 'bigint',
m: 'isSafeInteger',
k: 'isSafeInteger',
hash: 'hash',
});
const { p, k, m, hash, expand, DST: _DST } = options;
abytes(msg);
anum(count);
const DST = typeof _DST === 'string' ? utf8ToBytes(_DST) : _DST;
const log2p = p.toString(2).length;
const L = Math.ceil((log2p + k) / 8); // section 5.1 of ietf draft link above
const len_in_bytes = count * m * L;
let prb; // pseudo_random_bytes
if (expand === 'xmd') {
prb = expand_message_xmd(msg, DST, len_in_bytes, hash);
} else if (expand === 'xof') {
prb = expand_message_xof(msg, DST, len_in_bytes, k, hash);
} else if (expand === '_internal_pass') {
// for internal tests only
prb = msg;
} else {
throw new Error('expand must be "xmd" or "xof"');
}
const u = new Array(count);
for (let i = 0; i < count; i++) {
const e = new Array(m);
for (let j = 0; j < m; j++) {
const elm_offset = L * (j + i * m);
const tv = prb.subarray(elm_offset, elm_offset + L);
e[j] = mod(os2ip(tv), p);
}
u[i] = e;
}
return u;
}
export function isogenyMap>(field: F, map: [T[], T[], T[], T[]]) {
// Make same order as in spec
const COEFF = map.map((i) => Array.from(i).reverse());
return (x: T, y: T) => {
const [xNum, xDen, yNum, yDen] = COEFF.map((val) =>
val.reduce((acc, i) => field.add(field.mul(acc, x), i))
);
x = field.div(xNum, xDen); // xNum / xDen
y = field.mul(y, field.div(yNum, yDen)); // y * (yNum / yDev)
return { x, y };
};
}
export interface H2CPoint extends Group> {
add(rhs: H2CPoint): H2CPoint;
toAffine(iz?: bigint): AffinePoint;
clearCofactor(): H2CPoint;
assertValidity(): void;
}
export interface H2CPointConstructor extends GroupConstructor> {
fromAffine(ap: AffinePoint): H2CPoint;
}
export type MapToCurve = (scalar: bigint[]) => AffinePoint;
// Separated from initialization opts, so users won't accidentally change per-curve parameters
// (changing DST is ok!)
export type htfBasicOpts = { DST: UnicodeOrBytes };
export function createHasher(
Point: H2CPointConstructor,
mapToCurve: MapToCurve,
def: Opts & { encodeDST?: UnicodeOrBytes }
) {
if (typeof mapToCurve !== 'function') throw new Error('mapToCurve() must be defined');
return {
// Encodes byte string to elliptic curve.
// hash_to_curve from https://www.rfc-editor.org/rfc/rfc9380#section-3
hashToCurve(msg: Uint8Array, options?: htfBasicOpts) {
const u = hash_to_field(msg, 2, { ...def, DST: def.DST, ...options } as Opts);
const u0 = Point.fromAffine(mapToCurve(u[0]));
const u1 = Point.fromAffine(mapToCurve(u[1]));
const P = u0.add(u1).clearCofactor();
P.assertValidity();
return P;
},
// Encodes byte string to elliptic curve.
// encode_to_curve from https://www.rfc-editor.org/rfc/rfc9380#section-3
encodeToCurve(msg: Uint8Array, options?: htfBasicOpts) {
const u = hash_to_field(msg, 1, { ...def, DST: def.encodeDST, ...options } as Opts);
const P = Point.fromAffine(mapToCurve(u[0])).clearCofactor();
P.assertValidity();
return P;
},
// Same as encodeToCurve, but without hash
mapToCurve(scalars: bigint[]) {
if (!Array.isArray(scalars)) throw new Error('mapToCurve: expected array of bigints');
for (const i of scalars)
if (typeof i !== 'bigint')
throw new Error(`mapToCurve: expected array of bigints, got ${i} in array`);
const P = Point.fromAffine(mapToCurve(scalars)).clearCofactor();
P.assertValidity();
return P;
},
};
}