/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ import { sha512 } from '@noble/hashes/sha512'; import { concatBytes, randomBytes, utf8ToBytes } from '@noble/hashes/utils'; import { AffinePoint, Group } from './abstract/curve.js'; import { ExtPointType, twistedEdwards } from './abstract/edwards.js'; import { createHasher, expand_message_xmd, htfBasicOpts } from './abstract/hash-to-curve.js'; import { Field, FpSqrtEven, isNegativeLE, mod, pow2 } from './abstract/modular.js'; import { montgomery } from './abstract/montgomery.js'; import { bytesToHex, bytesToNumberLE, ensureBytes, equalBytes, Hex, numberToBytesLE, } from './abstract/utils.js'; /** * ed25519 Twisted Edwards curve with following addons: * - X25519 ECDH * - Ristretto cofactor elimination * - Elligator hash-to-group / point indistinguishability */ const ED25519_P = BigInt( '57896044618658097711785492504343953926634992332820282019728792003956564819949' ); // √(-1) aka √(a) aka 2^((p-1)/4) const ED25519_SQRT_M1 = /* @__PURE__ */ BigInt( '19681161376707505956807079304988542015446066515923890162744021073123829784752' ); // prettier-ignore const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3); // prettier-ignore const _5n = BigInt(5), _8n = BigInt(8); function ed25519_pow_2_252_3(x: bigint) { // prettier-ignore const _10n = BigInt(10), _20n = BigInt(20), _40n = BigInt(40), _80n = BigInt(80); const P = ED25519_P; const x2 = (x * x) % P; const b2 = (x2 * x) % P; // x^3, 11 const b4 = (pow2(b2, _2n, P) * b2) % P; // x^15, 1111 const b5 = (pow2(b4, _1n, P) * x) % P; // x^31 const b10 = (pow2(b5, _5n, P) * b5) % P; const b20 = (pow2(b10, _10n, P) * b10) % P; const b40 = (pow2(b20, _20n, P) * b20) % P; const b80 = (pow2(b40, _40n, P) * b40) % P; const b160 = (pow2(b80, _80n, P) * b80) % P; const b240 = (pow2(b160, _80n, P) * b80) % P; const b250 = (pow2(b240, _10n, P) * b10) % P; const pow_p_5_8 = (pow2(b250, _2n, P) * x) % P; // ^ To pow to (p+3)/8, multiply it by x. return { pow_p_5_8, b2 }; } function adjustScalarBytes(bytes: Uint8Array): Uint8Array { // Section 5: For X25519, in order to decode 32 random bytes as an integer scalar, // set the three least significant bits of the first byte bytes[0] &= 248; // 0b1111_1000 // and the most significant bit of the last to zero, bytes[31] &= 127; // 0b0111_1111 // set the second most significant bit of the last byte to 1 bytes[31] |= 64; // 0b0100_0000 return bytes; } // sqrt(u/v) function uvRatio(u: bigint, v: bigint): { isValid: boolean; value: bigint } { const P = ED25519_P; const v3 = mod(v * v * v, P); // v³ const v7 = mod(v3 * v3 * v, P); // v⁷ // (p+3)/8 and (p-5)/8 const pow = ed25519_pow_2_252_3(u * v7).pow_p_5_8; let x = mod(u * v3 * pow, P); // (uv³)(uv⁷)^(p-5)/8 const vx2 = mod(v * x * x, P); // vx² const root1 = x; // First root candidate const root2 = mod(x * ED25519_SQRT_M1, P); // Second root candidate const useRoot1 = vx2 === u; // If vx² = u (mod p), x is a square root const useRoot2 = vx2 === mod(-u, P); // If vx² = -u, set x <-- x * 2^((p-1)/4) const noRoot = vx2 === mod(-u * ED25519_SQRT_M1, P); // There is no valid root, vx² = -u√(-1) if (useRoot1) x = root1; if (useRoot2 || noRoot) x = root2; // We return root2 anyway, for const-time if (isNegativeLE(x, P)) x = mod(-x, P); return { isValid: useRoot1 || useRoot2, value: x }; } // Just in case export const ED25519_TORSION_SUBGROUP = [ '0100000000000000000000000000000000000000000000000000000000000000', 'c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac037a', '0000000000000000000000000000000000000000000000000000000000000080', '26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc05', 'ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f', '26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc85', '0000000000000000000000000000000000000000000000000000000000000000', 'c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa', ]; const Fp = /* @__PURE__ */ (() => Field(ED25519_P, undefined, true))(); const ed25519Defaults = /* @__PURE__ */ (() => ({ // Param: a a: BigInt(-1), // Fp.create(-1) is proper; our way still works and is faster // d is equal to -121665/121666 over finite field. // Negative number is P - number, and division is invert(number, P) d: BigInt('37095705934669439343138083508754565189542113879843219016388785533085940283555'), // Finite field 𝔽p over which we'll do calculations; 2n**255n - 19n Fp, // Subgroup order: how many points curve has // 2n**252n + 27742317777372353535851937790883648493n; n: BigInt('7237005577332262213973186563042994240857116359379907606001950938285454250989'), // Cofactor h: _8n, // Base point (x, y) aka generator point Gx: BigInt('15112221349535400772501151409588531511454012693041857206046113283949847762202'), Gy: BigInt('46316835694926478169428394003475163141307993866256225615783033603165251855960'), hash: sha512, randomBytes, adjustScalarBytes, // dom2 // Ratio of u to v. Allows us to combine inversion and square root. Uses algo from RFC8032 5.1.3. // Constant-time, u/√v uvRatio, }) as const)(); export const ed25519 = /* @__PURE__ */ (() => twistedEdwards(ed25519Defaults))(); function ed25519_domain(data: Uint8Array, ctx: Uint8Array, phflag: boolean) { if (ctx.length > 255) throw new Error('Context is too big'); return concatBytes( utf8ToBytes('SigEd25519 no Ed25519 collisions'), new Uint8Array([phflag ? 1 : 0, ctx.length]), ctx, data ); } export const ed25519ctx = /* @__PURE__ */ (() => twistedEdwards({ ...ed25519Defaults, domain: ed25519_domain, }))(); export const ed25519ph = /* @__PURE__ */ (() => twistedEdwards( Object.assign({}, ed25519Defaults, { domain: ed25519_domain, prehash: sha512, }) ))(); export const x25519 = /* @__PURE__ */ (() => montgomery({ P: ED25519_P, a: BigInt(486662), montgomeryBits: 255, // n is 253 bits nByteLength: 32, Gu: BigInt(9), powPminus2: (x: bigint): bigint => { const P = ED25519_P; // x^(p-2) aka x^(2^255-21) const { pow_p_5_8, b2 } = ed25519_pow_2_252_3(x); return mod(pow2(pow_p_5_8, _3n, P) * b2, P); }, adjustScalarBytes, randomBytes, }))(); /** * Converts ed25519 public key to x25519 public key. Uses formula: * * `(u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)` * * `(x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))` * @example * const someonesPub = ed25519.getPublicKey(ed25519.utils.randomPrivateKey()); * const aPriv = x25519.utils.randomPrivateKey(); * x25519.getSharedSecret(aPriv, edwardsToMontgomeryPub(someonesPub)) */ export function edwardsToMontgomeryPub(edwardsPub: Hex): Uint8Array { const { y } = ed25519.ExtendedPoint.fromHex(edwardsPub); const _1n = BigInt(1); return Fp.toBytes(Fp.create((_1n + y) * Fp.inv(_1n - y))); } export const edwardsToMontgomery = edwardsToMontgomeryPub; // deprecated /** * Converts ed25519 secret key to x25519 secret key. * @example * const someonesPub = x25519.getPublicKey(x25519.utils.randomPrivateKey()); * const aPriv = ed25519.utils.randomPrivateKey(); * x25519.getSharedSecret(edwardsToMontgomeryPriv(aPriv), someonesPub) */ export function edwardsToMontgomeryPriv(edwardsPriv: Uint8Array): Uint8Array { const hashed = ed25519Defaults.hash(edwardsPriv.subarray(0, 32)); return ed25519Defaults.adjustScalarBytes(hashed).subarray(0, 32); } // Hash To Curve Elligator2 Map (NOTE: different from ristretto255 elligator) // NOTE: very important part is usage of FpSqrtEven for ELL2_C1_EDWARDS, since // SageMath returns different root first and everything falls apart const ELL2_C1 = /* @__PURE__ */ (() => (Fp.ORDER + _3n) / _8n)(); // 1. c1 = (q + 3) / 8 # Integer arithmetic const ELL2_C2 = /* @__PURE__ */ (() => Fp.pow(_2n, ELL2_C1))(); // 2. c2 = 2^c1 const ELL2_C3 = /* @__PURE__ */ (() => Fp.sqrt(Fp.neg(Fp.ONE)))(); // 3. c3 = sqrt(-1) // prettier-ignore function map_to_curve_elligator2_curve25519(u: bigint) { const ELL2_C4 = (Fp.ORDER - _5n) / _8n; // 4. c4 = (q - 5) / 8 # Integer arithmetic const ELL2_J = BigInt(486662); let tv1 = Fp.sqr(u); // 1. tv1 = u^2 tv1 = Fp.mul(tv1, _2n); // 2. tv1 = 2 * tv1 let xd = Fp.add(tv1, Fp.ONE); // 3. xd = tv1 + 1 # Nonzero: -1 is square (mod p), tv1 is not let x1n = Fp.neg(ELL2_J); // 4. x1n = -J # x1 = x1n / xd = -J / (1 + 2 * u^2) let tv2 = Fp.sqr(xd); // 5. tv2 = xd^2 let gxd = Fp.mul(tv2, xd); // 6. gxd = tv2 * xd # gxd = xd^3 let gx1 = Fp.mul(tv1, ELL2_J);// 7. gx1 = J * tv1 # x1n + J * xd gx1 = Fp.mul(gx1, x1n); // 8. gx1 = gx1 * x1n # x1n^2 + J * x1n * xd gx1 = Fp.add(gx1, tv2); // 9. gx1 = gx1 + tv2 # x1n^2 + J * x1n * xd + xd^2 gx1 = Fp.mul(gx1, x1n); // 10. gx1 = gx1 * x1n # x1n^3 + J * x1n^2 * xd + x1n * xd^2 let tv3 = Fp.sqr(gxd); // 11. tv3 = gxd^2 tv2 = Fp.sqr(tv3); // 12. tv2 = tv3^2 # gxd^4 tv3 = Fp.mul(tv3, gxd); // 13. tv3 = tv3 * gxd # gxd^3 tv3 = Fp.mul(tv3, gx1); // 14. tv3 = tv3 * gx1 # gx1 * gxd^3 tv2 = Fp.mul(tv2, tv3); // 15. tv2 = tv2 * tv3 # gx1 * gxd^7 let y11 = Fp.pow(tv2, ELL2_C4); // 16. y11 = tv2^c4 # (gx1 * gxd^7)^((p - 5) / 8) y11 = Fp.mul(y11, tv3); // 17. y11 = y11 * tv3 # gx1*gxd^3*(gx1*gxd^7)^((p-5)/8) let y12 = Fp.mul(y11, ELL2_C3); // 18. y12 = y11 * c3 tv2 = Fp.sqr(y11); // 19. tv2 = y11^2 tv2 = Fp.mul(tv2, gxd); // 20. tv2 = tv2 * gxd let e1 = Fp.eql(tv2, gx1); // 21. e1 = tv2 == gx1 let y1 = Fp.cmov(y12, y11, e1); // 22. y1 = CMOV(y12, y11, e1) # If g(x1) is square, this is its sqrt let x2n = Fp.mul(x1n, tv1); // 23. x2n = x1n * tv1 # x2 = x2n / xd = 2 * u^2 * x1n / xd let y21 = Fp.mul(y11, u); // 24. y21 = y11 * u y21 = Fp.mul(y21, ELL2_C2); // 25. y21 = y21 * c2 let y22 = Fp.mul(y21, ELL2_C3); // 26. y22 = y21 * c3 let gx2 = Fp.mul(gx1, tv1); // 27. gx2 = gx1 * tv1 # g(x2) = gx2 / gxd = 2 * u^2 * g(x1) tv2 = Fp.sqr(y21); // 28. tv2 = y21^2 tv2 = Fp.mul(tv2, gxd); // 29. tv2 = tv2 * gxd let e2 = Fp.eql(tv2, gx2); // 30. e2 = tv2 == gx2 let y2 = Fp.cmov(y22, y21, e2); // 31. y2 = CMOV(y22, y21, e2) # If g(x2) is square, this is its sqrt tv2 = Fp.sqr(y1); // 32. tv2 = y1^2 tv2 = Fp.mul(tv2, gxd); // 33. tv2 = tv2 * gxd let e3 = Fp.eql(tv2, gx1); // 34. e3 = tv2 == gx1 let xn = Fp.cmov(x2n, x1n, e3); // 35. xn = CMOV(x2n, x1n, e3) # If e3, x = x1, else x = x2 let y = Fp.cmov(y2, y1, e3); // 36. y = CMOV(y2, y1, e3) # If e3, y = y1, else y = y2 let e4 = Fp.isOdd(y); // 37. e4 = sgn0(y) == 1 # Fix sign of y y = Fp.cmov(y, Fp.neg(y), e3 !== e4); // 38. y = CMOV(y, -y, e3 XOR e4) return { xMn: xn, xMd: xd, yMn: y, yMd: _1n }; // 39. return (xn, xd, y, 1) } const ELL2_C1_EDWARDS = /* @__PURE__ */ (() => FpSqrtEven(Fp, Fp.neg(BigInt(486664))))(); // sgn0(c1) MUST equal 0 function map_to_curve_elligator2_edwards25519(u: bigint) { const { xMn, xMd, yMn, yMd } = map_to_curve_elligator2_curve25519(u); // 1. (xMn, xMd, yMn, yMd) = // map_to_curve_elligator2_curve25519(u) let xn = Fp.mul(xMn, yMd); // 2. xn = xMn * yMd xn = Fp.mul(xn, ELL2_C1_EDWARDS); // 3. xn = xn * c1 let xd = Fp.mul(xMd, yMn); // 4. xd = xMd * yMn # xn / xd = c1 * xM / yM let yn = Fp.sub(xMn, xMd); // 5. yn = xMn - xMd let yd = Fp.add(xMn, xMd); // 6. yd = xMn + xMd # (n / d - 1) / (n / d + 1) = (n - d) / (n + d) let tv1 = Fp.mul(xd, yd); // 7. tv1 = xd * yd let e = Fp.eql(tv1, Fp.ZERO); // 8. e = tv1 == 0 xn = Fp.cmov(xn, Fp.ZERO, e); // 9. xn = CMOV(xn, 0, e) xd = Fp.cmov(xd, Fp.ONE, e); // 10. xd = CMOV(xd, 1, e) yn = Fp.cmov(yn, Fp.ONE, e); // 11. yn = CMOV(yn, 1, e) yd = Fp.cmov(yd, Fp.ONE, e); // 12. yd = CMOV(yd, 1, e) const inv = Fp.invertBatch([xd, yd]); // batch division return { x: Fp.mul(xn, inv[0]), y: Fp.mul(yn, inv[1]) }; // 13. return (xn, xd, yn, yd) } const htf = /* @__PURE__ */ (() => createHasher( ed25519.ExtendedPoint, (scalars: bigint[]) => map_to_curve_elligator2_edwards25519(scalars[0]), { DST: 'edwards25519_XMD:SHA-512_ELL2_RO_', encodeDST: 'edwards25519_XMD:SHA-512_ELL2_NU_', p: Fp.ORDER, m: 1, k: 128, expand: 'xmd', hash: sha512, } ))(); export const hashToCurve = /* @__PURE__ */ (() => htf.hashToCurve)(); export const encodeToCurve = /* @__PURE__ */ (() => htf.encodeToCurve)(); function assertRstPoint(other: unknown) { if (!(other instanceof RistPoint)) throw new Error('RistrettoPoint expected'); } // √(-1) aka √(a) aka 2^((p-1)/4) const SQRT_M1 = ED25519_SQRT_M1; // √(ad - 1) const SQRT_AD_MINUS_ONE = /* @__PURE__ */ BigInt( '25063068953384623474111414158702152701244531502492656460079210482610430750235' ); // 1 / √(a-d) const INVSQRT_A_MINUS_D = /* @__PURE__ */ BigInt( '54469307008909316920995813868745141605393597292927456921205312896311721017578' ); // 1-d² const ONE_MINUS_D_SQ = /* @__PURE__ */ BigInt( '1159843021668779879193775521855586647937357759715417654439879720876111806838' ); // (d-1)² const D_MINUS_ONE_SQ = /* @__PURE__ */ BigInt( '40440834346308536858101042469323190826248399146238708352240133220865137265952' ); // Calculates 1/√(number) const invertSqrt = (number: bigint) => uvRatio(_1n, number); const MAX_255B = /* @__PURE__ */ BigInt( '0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff' ); const bytes255ToNumberLE = (bytes: Uint8Array) => ed25519.CURVE.Fp.create(bytesToNumberLE(bytes) & MAX_255B); type ExtendedPoint = ExtPointType; // Computes Elligator map for Ristretto // https://ristretto.group/formulas/elligator.html function calcElligatorRistrettoMap(r0: bigint): ExtendedPoint { const { d } = ed25519.CURVE; const P = ed25519.CURVE.Fp.ORDER; const mod = ed25519.CURVE.Fp.create; const r = mod(SQRT_M1 * r0 * r0); // 1 const Ns = mod((r + _1n) * ONE_MINUS_D_SQ); // 2 let c = BigInt(-1); // 3 const D = mod((c - d * r) * mod(r + d)); // 4 let { isValid: Ns_D_is_sq, value: s } = uvRatio(Ns, D); // 5 let s_ = mod(s * r0); // 6 if (!isNegativeLE(s_, P)) s_ = mod(-s_); if (!Ns_D_is_sq) s = s_; // 7 if (!Ns_D_is_sq) c = r; // 8 const Nt = mod(c * (r - _1n) * D_MINUS_ONE_SQ - D); // 9 const s2 = s * s; const W0 = mod((s + s) * D); // 10 const W1 = mod(Nt * SQRT_AD_MINUS_ONE); // 11 const W2 = mod(_1n - s2); // 12 const W3 = mod(_1n + s2); // 13 return new ed25519.ExtendedPoint(mod(W0 * W3), mod(W2 * W1), mod(W1 * W3), mod(W0 * W2)); } /** * Each ed25519/ExtendedPoint has 8 different equivalent points. This can be * a source of bugs for protocols like ring signatures. Ristretto was created to solve this. * Ristretto point operates in X:Y:Z:T extended coordinates like ExtendedPoint, * but it should work in its own namespace: do not combine those two. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448 */ class RistPoint implements Group { static BASE: RistPoint; static ZERO: RistPoint; // Private property to discourage combining ExtendedPoint + RistrettoPoint // Always use Ristretto encoding/decoding instead. constructor(private readonly ep: ExtendedPoint) {} static fromAffine(ap: AffinePoint) { return new RistPoint(ed25519.ExtendedPoint.fromAffine(ap)); } /** * Takes uniform output of 64-byte hash function like sha512 and converts it to `RistrettoPoint`. * The hash-to-group operation applies Elligator twice and adds the results. * **Note:** this is one-way map, there is no conversion from point to hash. * https://ristretto.group/formulas/elligator.html * @param hex 64-byte output of a hash function */ static hashToCurve(hex: Hex): RistPoint { hex = ensureBytes('ristrettoHash', hex, 64); const r1 = bytes255ToNumberLE(hex.slice(0, 32)); const R1 = calcElligatorRistrettoMap(r1); const r2 = bytes255ToNumberLE(hex.slice(32, 64)); const R2 = calcElligatorRistrettoMap(r2); return new RistPoint(R1.add(R2)); } /** * Converts ristretto-encoded string to ristretto point. * https://ristretto.group/formulas/decoding.html * @param hex Ristretto-encoded 32 bytes. Not every 32-byte string is valid ristretto encoding */ static fromHex(hex: Hex): RistPoint { hex = ensureBytes('ristrettoHex', hex, 32); const { a, d } = ed25519.CURVE; const P = ed25519.CURVE.Fp.ORDER; const mod = ed25519.CURVE.Fp.create; const emsg = 'RistrettoPoint.fromHex: the hex is not valid encoding of RistrettoPoint'; const s = bytes255ToNumberLE(hex); // 1. Check that s_bytes is the canonical encoding of a field element, or else abort. // 3. Check that s is non-negative, or else abort if (!equalBytes(numberToBytesLE(s, 32), hex) || isNegativeLE(s, P)) throw new Error(emsg); const s2 = mod(s * s); const u1 = mod(_1n + a * s2); // 4 (a is -1) const u2 = mod(_1n - a * s2); // 5 const u1_2 = mod(u1 * u1); const u2_2 = mod(u2 * u2); const v = mod(a * d * u1_2 - u2_2); // 6 const { isValid, value: I } = invertSqrt(mod(v * u2_2)); // 7 const Dx = mod(I * u2); // 8 const Dy = mod(I * Dx * v); // 9 let x = mod((s + s) * Dx); // 10 if (isNegativeLE(x, P)) x = mod(-x); // 10 const y = mod(u1 * Dy); // 11 const t = mod(x * y); // 12 if (!isValid || isNegativeLE(t, P) || y === _0n) throw new Error(emsg); return new RistPoint(new ed25519.ExtendedPoint(x, y, _1n, t)); } /** * Encodes ristretto point to Uint8Array. * https://ristretto.group/formulas/encoding.html */ toRawBytes(): Uint8Array { let { ex: x, ey: y, ez: z, et: t } = this.ep; const P = ed25519.CURVE.Fp.ORDER; const mod = ed25519.CURVE.Fp.create; const u1 = mod(mod(z + y) * mod(z - y)); // 1 const u2 = mod(x * y); // 2 // Square root always exists const u2sq = mod(u2 * u2); const { value: invsqrt } = invertSqrt(mod(u1 * u2sq)); // 3 const D1 = mod(invsqrt * u1); // 4 const D2 = mod(invsqrt * u2); // 5 const zInv = mod(D1 * D2 * t); // 6 let D: bigint; // 7 if (isNegativeLE(t * zInv, P)) { let _x = mod(y * SQRT_M1); let _y = mod(x * SQRT_M1); x = _x; y = _y; D = mod(D1 * INVSQRT_A_MINUS_D); } else { D = D2; // 8 } if (isNegativeLE(x * zInv, P)) y = mod(-y); // 9 let s = mod((z - y) * D); // 10 (check footer's note, no sqrt(-a)) if (isNegativeLE(s, P)) s = mod(-s); return numberToBytesLE(s, 32); // 11 } toHex(): string { return bytesToHex(this.toRawBytes()); } toString(): string { return this.toHex(); } // Compare one point to another. equals(other: RistPoint): boolean { assertRstPoint(other); const { ex: X1, ey: Y1 } = this.ep; const { ex: X2, ey: Y2 } = other.ep; const mod = ed25519.CURVE.Fp.create; // (x1 * y2 == y1 * x2) | (y1 * y2 == x1 * x2) const one = mod(X1 * Y2) === mod(Y1 * X2); const two = mod(Y1 * Y2) === mod(X1 * X2); return one || two; } add(other: RistPoint): RistPoint { assertRstPoint(other); return new RistPoint(this.ep.add(other.ep)); } subtract(other: RistPoint): RistPoint { assertRstPoint(other); return new RistPoint(this.ep.subtract(other.ep)); } multiply(scalar: bigint): RistPoint { return new RistPoint(this.ep.multiply(scalar)); } multiplyUnsafe(scalar: bigint): RistPoint { return new RistPoint(this.ep.multiplyUnsafe(scalar)); } double(): RistPoint { return new RistPoint(this.ep.double()); } negate(): RistPoint { return new RistPoint(this.ep.negate()); } } export const RistrettoPoint = /* @__PURE__ */ (() => { if (!RistPoint.BASE) RistPoint.BASE = new RistPoint(ed25519.ExtendedPoint.BASE); if (!RistPoint.ZERO) RistPoint.ZERO = new RistPoint(ed25519.ExtendedPoint.ZERO); return RistPoint; })(); // Hashing to ristretto255. https://www.rfc-editor.org/rfc/rfc9380#appendix-B export const hashToRistretto255 = (msg: Uint8Array, options: htfBasicOpts) => { const d = options.DST; const DST = typeof d === 'string' ? utf8ToBytes(d) : d; const uniform_bytes = expand_message_xmd(msg, DST, 64, sha512); const P = RistPoint.hashToCurve(uniform_bytes); return P; }; export const hash_to_ristretto255 = hashToRistretto255; // legacy