/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ import { shake256 } from '@noble/hashes/sha3'; import { concatBytes, randomBytes, utf8ToBytes, wrapConstructor } from '@noble/hashes/utils'; import { AffinePoint, Group } from './abstract/curve.js'; import { ExtPointType, twistedEdwards } from './abstract/edwards.js'; import { createHasher, expand_message_xof, htfBasicOpts } from './abstract/hash-to-curve.js'; import { Field, isNegativeLE, mod, pow2 } from './abstract/modular.js'; import { montgomery } from './abstract/montgomery.js'; import { bytesToHex, bytesToNumberLE, ensureBytes, equalBytes, Hex, numberToBytesLE, } from './abstract/utils.js'; /** * Edwards448 (not Ed448-Goldilocks) curve with following addons: * - X448 ECDH * - Decaf cofactor elimination * - Elligator hash-to-group / point indistinguishability * Conforms to RFC 8032 https://www.rfc-editor.org/rfc/rfc8032.html#section-5.2 */ const shake256_114 = wrapConstructor(() => shake256.create({ dkLen: 114 })); const shake256_64 = wrapConstructor(() => shake256.create({ dkLen: 64 })); const ed448P = BigInt( '726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018365439' ); // prettier-ignore const _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _4n = BigInt(4), _11n = BigInt(11); // prettier-ignore const _22n = BigInt(22), _44n = BigInt(44), _88n = BigInt(88), _223n = BigInt(223); // powPminus3div4 calculates z = x^k mod p, where k = (p-3)/4. // Used for efficient square root calculation. // ((P-3)/4).toString(2) would produce bits [223x 1, 0, 222x 1] function ed448_pow_Pminus3div4(x: bigint): bigint { const P = ed448P; const b2 = (x * x * x) % P; const b3 = (b2 * b2 * x) % P; const b6 = (pow2(b3, _3n, P) * b3) % P; const b9 = (pow2(b6, _3n, P) * b3) % P; const b11 = (pow2(b9, _2n, P) * b2) % P; const b22 = (pow2(b11, _11n, P) * b11) % P; const b44 = (pow2(b22, _22n, P) * b22) % P; const b88 = (pow2(b44, _44n, P) * b44) % P; const b176 = (pow2(b88, _88n, P) * b88) % P; const b220 = (pow2(b176, _44n, P) * b44) % P; const b222 = (pow2(b220, _2n, P) * b2) % P; const b223 = (pow2(b222, _1n, P) * x) % P; return (pow2(b223, _223n, P) * b222) % P; } function adjustScalarBytes(bytes: Uint8Array): Uint8Array { // Section 5: Likewise, for X448, set the two least significant bits of the first byte to 0, and the most // significant bit of the last byte to 1. bytes[0] &= 252; // 0b11111100 // and the most significant bit of the last byte to 1. bytes[55] |= 128; // 0b10000000 // NOTE: is is NOOP for 56 bytes scalars (X25519/X448) bytes[56] = 0; // Byte outside of group (456 buts vs 448 bits) return bytes; } // Constant-time ratio of u to v. Allows to combine inversion and square root u/√v. // Uses algo from RFC8032 5.1.3. function uvRatio(u: bigint, v: bigint): { isValid: boolean; value: bigint } { const P = ed448P; // https://www.rfc-editor.org/rfc/rfc8032#section-5.2.3 // To compute the square root of (u/v), the first step is to compute the // candidate root x = (u/v)^((p+1)/4). This can be done using the // following trick, to use a single modular powering for both the // inversion of v and the square root: // x = (u/v)^((p+1)/4) = u³v(u⁵v³)^((p-3)/4) (mod p) const u2v = mod(u * u * v, P); // u²v const u3v = mod(u2v * u, P); // u³v const u5v3 = mod(u3v * u2v * v, P); // u⁵v³ const root = ed448_pow_Pminus3div4(u5v3); const x = mod(u3v * root, P); // Verify that root is exists const x2 = mod(x * x, P); // x² // If vx² = u, the recovered x-coordinate is x. Otherwise, no // square root exists, and the decoding fails. return { isValid: mod(x2 * v, P) === u, value: x }; } const Fp = Field(ed448P, 456, true); const ED448_DEF = { // Param: a a: BigInt(1), // -39081. Negative number is P - number d: BigInt( '726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018326358' ), // Finite field 𝔽p over which we'll do calculations; 2n**448n - 2n**224n - 1n Fp, // Subgroup order: how many points curve has; // 2n**446n - 13818066809895115352007386748515426880336692474882178609894547503885n n: BigInt( '181709681073901722637330951972001133588410340171829515070372549795146003961539585716195755291692375963310293709091662304773755859649779' ), // RFC 7748 has 56-byte keys, RFC 8032 has 57-byte keys nBitLength: 456, // Cofactor h: BigInt(4), // Base point (x, y) aka generator point Gx: BigInt( '224580040295924300187604334099896036246789641632564134246125461686950415467406032909029192869357953282578032075146446173674602635247710' ), Gy: BigInt( '298819210078481492676017930443930673437544040154080242095928241372331506189835876003536878655418784733982303233503462500531545062832660' ), // SHAKE256(dom4(phflag,context)||x, 114) hash: shake256_114, randomBytes, adjustScalarBytes, // dom4 domain: (data: Uint8Array, ctx: Uint8Array, phflag: boolean) => { if (ctx.length > 255) throw new Error(`Context is too big: ${ctx.length}`); return concatBytes( utf8ToBytes('SigEd448'), new Uint8Array([phflag ? 1 : 0, ctx.length]), ctx, data ); }, uvRatio, } as const; export const ed448 = /* @__PURE__ */ twistedEdwards(ED448_DEF); // NOTE: there is no ed448ctx, since ed448 supports ctx by default export const ed448ph = /* @__PURE__ */ twistedEdwards({ ...ED448_DEF, prehash: shake256_64 }); export const x448 = /* @__PURE__ */ (() => montgomery({ a: BigInt(156326), // RFC 7748 has 56-byte keys, RFC 8032 has 57-byte keys montgomeryBits: 448, nByteLength: 56, P: ed448P, Gu: BigInt(5), powPminus2: (x: bigint): bigint => { const P = ed448P; const Pminus3div4 = ed448_pow_Pminus3div4(x); const Pminus3 = pow2(Pminus3div4, BigInt(2), P); return mod(Pminus3 * x, P); // Pminus3 * x = Pminus2 }, adjustScalarBytes, randomBytes, }))(); /** * Converts edwards448 public key to x448 public key. Uses formula: * * `(u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)` * * `(x, y) = (sqrt(156324)*u/v, (1+u)/(1-u))` * @example * const aPub = ed448.getPublicKey(utils.randomPrivateKey()); * x448.getSharedSecret(edwardsToMontgomery(aPub), edwardsToMontgomery(someonesPub)) */ export function edwardsToMontgomeryPub(edwardsPub: string | Uint8Array): Uint8Array { const { y } = ed448.ExtendedPoint.fromHex(edwardsPub); const _1n = BigInt(1); return Fp.toBytes(Fp.create((y - _1n) * Fp.inv(y + _1n))); } export const edwardsToMontgomery = edwardsToMontgomeryPub; // deprecated // TODO: add edwardsToMontgomeryPriv, similar to ed25519 version // Hash To Curve Elligator2 Map const ELL2_C1 = (Fp.ORDER - BigInt(3)) / BigInt(4); // 1. c1 = (q - 3) / 4 # Integer arithmetic const ELL2_J = BigInt(156326); function map_to_curve_elligator2_curve448(u: bigint) { let tv1 = Fp.sqr(u); // 1. tv1 = u^2 let e1 = Fp.eql(tv1, Fp.ONE); // 2. e1 = tv1 == 1 tv1 = Fp.cmov(tv1, Fp.ZERO, e1); // 3. tv1 = CMOV(tv1, 0, e1) # If Z * u^2 == -1, set tv1 = 0 let xd = Fp.sub(Fp.ONE, tv1); // 4. xd = 1 - tv1 let x1n = Fp.neg(ELL2_J); // 5. x1n = -J let tv2 = Fp.sqr(xd); // 6. tv2 = xd^2 let gxd = Fp.mul(tv2, xd); // 7. gxd = tv2 * xd # gxd = xd^3 let gx1 = Fp.mul(tv1, Fp.neg(ELL2_J)); // 8. gx1 = -J * tv1 # x1n + J * xd gx1 = Fp.mul(gx1, x1n); // 9. gx1 = gx1 * x1n # x1n^2 + J * x1n * xd gx1 = Fp.add(gx1, tv2); // 10. gx1 = gx1 + tv2 # x1n^2 + J * x1n * xd + xd^2 gx1 = Fp.mul(gx1, x1n); // 11. gx1 = gx1 * x1n # x1n^3 + J * x1n^2 * xd + x1n * xd^2 let tv3 = Fp.sqr(gxd); // 12. tv3 = gxd^2 tv2 = Fp.mul(gx1, gxd); // 13. tv2 = gx1 * gxd # gx1 * gxd tv3 = Fp.mul(tv3, tv2); // 14. tv3 = tv3 * tv2 # gx1 * gxd^3 let y1 = Fp.pow(tv3, ELL2_C1); // 15. y1 = tv3^c1 # (gx1 * gxd^3)^((p - 3) / 4) y1 = Fp.mul(y1, tv2); // 16. y1 = y1 * tv2 # gx1 * gxd * (gx1 * gxd^3)^((p - 3) / 4) let x2n = Fp.mul(x1n, Fp.neg(tv1)); // 17. x2n = -tv1 * x1n # x2 = x2n / xd = -1 * u^2 * x1n / xd let y2 = Fp.mul(y1, u); // 18. y2 = y1 * u y2 = Fp.cmov(y2, Fp.ZERO, e1); // 19. y2 = CMOV(y2, 0, e1) tv2 = Fp.sqr(y1); // 20. tv2 = y1^2 tv2 = Fp.mul(tv2, gxd); // 21. tv2 = tv2 * gxd let e2 = Fp.eql(tv2, gx1); // 22. e2 = tv2 == gx1 let xn = Fp.cmov(x2n, x1n, e2); // 23. xn = CMOV(x2n, x1n, e2) # If e2, x = x1, else x = x2 let y = Fp.cmov(y2, y1, e2); // 24. y = CMOV(y2, y1, e2) # If e2, y = y1, else y = y2 let e3 = Fp.isOdd(y); // 25. e3 = sgn0(y) == 1 # Fix sign of y y = Fp.cmov(y, Fp.neg(y), e2 !== e3); // 26. y = CMOV(y, -y, e2 XOR e3) return { xn, xd, yn: y, yd: Fp.ONE }; // 27. return (xn, xd, y, 1) } function map_to_curve_elligator2_edwards448(u: bigint) { let { xn, xd, yn, yd } = map_to_curve_elligator2_curve448(u); // 1. (xn, xd, yn, yd) = map_to_curve_elligator2_curve448(u) let xn2 = Fp.sqr(xn); // 2. xn2 = xn^2 let xd2 = Fp.sqr(xd); // 3. xd2 = xd^2 let xd4 = Fp.sqr(xd2); // 4. xd4 = xd2^2 let yn2 = Fp.sqr(yn); // 5. yn2 = yn^2 let yd2 = Fp.sqr(yd); // 6. yd2 = yd^2 let xEn = Fp.sub(xn2, xd2); // 7. xEn = xn2 - xd2 let tv2 = Fp.sub(xEn, xd2); // 8. tv2 = xEn - xd2 xEn = Fp.mul(xEn, xd2); // 9. xEn = xEn * xd2 xEn = Fp.mul(xEn, yd); // 10. xEn = xEn * yd xEn = Fp.mul(xEn, yn); // 11. xEn = xEn * yn xEn = Fp.mul(xEn, _4n); // 12. xEn = xEn * 4 tv2 = Fp.mul(tv2, xn2); // 13. tv2 = tv2 * xn2 tv2 = Fp.mul(tv2, yd2); // 14. tv2 = tv2 * yd2 let tv3 = Fp.mul(yn2, _4n); // 15. tv3 = 4 * yn2 let tv1 = Fp.add(tv3, yd2); // 16. tv1 = tv3 + yd2 tv1 = Fp.mul(tv1, xd4); // 17. tv1 = tv1 * xd4 let xEd = Fp.add(tv1, tv2); // 18. xEd = tv1 + tv2 tv2 = Fp.mul(tv2, xn); // 19. tv2 = tv2 * xn let tv4 = Fp.mul(xn, xd4); // 20. tv4 = xn * xd4 let yEn = Fp.sub(tv3, yd2); // 21. yEn = tv3 - yd2 yEn = Fp.mul(yEn, tv4); // 22. yEn = yEn * tv4 yEn = Fp.sub(yEn, tv2); // 23. yEn = yEn - tv2 tv1 = Fp.add(xn2, xd2); // 24. tv1 = xn2 + xd2 tv1 = Fp.mul(tv1, xd2); // 25. tv1 = tv1 * xd2 tv1 = Fp.mul(tv1, xd); // 26. tv1 = tv1 * xd tv1 = Fp.mul(tv1, yn2); // 27. tv1 = tv1 * yn2 tv1 = Fp.mul(tv1, BigInt(-2)); // 28. tv1 = -2 * tv1 let yEd = Fp.add(tv2, tv1); // 29. yEd = tv2 + tv1 tv4 = Fp.mul(tv4, yd2); // 30. tv4 = tv4 * yd2 yEd = Fp.add(yEd, tv4); // 31. yEd = yEd + tv4 tv1 = Fp.mul(xEd, yEd); // 32. tv1 = xEd * yEd let e = Fp.eql(tv1, Fp.ZERO); // 33. e = tv1 == 0 xEn = Fp.cmov(xEn, Fp.ZERO, e); // 34. xEn = CMOV(xEn, 0, e) xEd = Fp.cmov(xEd, Fp.ONE, e); // 35. xEd = CMOV(xEd, 1, e) yEn = Fp.cmov(yEn, Fp.ONE, e); // 36. yEn = CMOV(yEn, 1, e) yEd = Fp.cmov(yEd, Fp.ONE, e); // 37. yEd = CMOV(yEd, 1, e) const inv = Fp.invertBatch([xEd, yEd]); // batch division return { x: Fp.mul(xEn, inv[0]), y: Fp.mul(yEn, inv[1]) }; // 38. return (xEn, xEd, yEn, yEd) } const htf = /* @__PURE__ */ (() => createHasher( ed448.ExtendedPoint, (scalars: bigint[]) => map_to_curve_elligator2_edwards448(scalars[0]), { DST: 'edwards448_XOF:SHAKE256_ELL2_RO_', encodeDST: 'edwards448_XOF:SHAKE256_ELL2_NU_', p: Fp.ORDER, m: 1, k: 224, expand: 'xof', hash: shake256, } ))(); export const hashToCurve = /* @__PURE__ */ (() => htf.hashToCurve)(); export const encodeToCurve = /* @__PURE__ */ (() => htf.encodeToCurve)(); function assertDcfPoint(other: unknown) { if (!(other instanceof DcfPoint)) throw new Error('DecafPoint expected'); } // 1-d const ONE_MINUS_D = BigInt('39082'); // 1-2d const ONE_MINUS_TWO_D = BigInt('78163'); // √(-d) const SQRT_MINUS_D = BigInt( '98944233647732219769177004876929019128417576295529901074099889598043702116001257856802131563896515373927712232092845883226922417596214' ); // 1 / √(-d) const INVSQRT_MINUS_D = BigInt( '315019913931389607337177038330951043522456072897266928557328499619017160722351061360252776265186336876723201881398623946864393857820716' ); // Calculates 1/√(number) const invertSqrt = (number: bigint) => uvRatio(_1n, number); const MAX_448B = BigInt( '0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff' ); const bytes448ToNumberLE = (bytes: Uint8Array) => ed448.CURVE.Fp.create(bytesToNumberLE(bytes) & MAX_448B); type ExtendedPoint = ExtPointType; // Computes Elligator map for Decaf // https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-element-derivation-2 function calcElligatorDecafMap(r0: bigint): ExtendedPoint { const { d } = ed448.CURVE; const P = ed448.CURVE.Fp.ORDER; const mod = ed448.CURVE.Fp.create; const r = mod(-(r0 * r0)); // 1 const u0 = mod(d * (r - _1n)); // 2 const u1 = mod((u0 + _1n) * (u0 - r)); // 3 const { isValid: was_square, value: v } = uvRatio(ONE_MINUS_TWO_D, mod((r + _1n) * u1)); // 4 let v_prime = v; // 5 if (!was_square) v_prime = mod(r0 * v); let sgn = _1n; // 6 if (!was_square) sgn = mod(-_1n); const s = mod(v_prime * (r + _1n)); // 7 let s_abs = s; if (isNegativeLE(s, P)) s_abs = mod(-s); const s2 = s * s; const W0 = mod(s_abs * _2n); // 8 const W1 = mod(s2 + _1n); // 9 const W2 = mod(s2 - _1n); // 10 const W3 = mod(v_prime * s * (r - _1n) * ONE_MINUS_TWO_D + sgn); // 11 return new ed448.ExtendedPoint(mod(W0 * W3), mod(W2 * W1), mod(W1 * W3), mod(W0 * W2)); } /** * Each ed448/ExtendedPoint has 4 different equivalent points. This can be * a source of bugs for protocols like ring signatures. Decaf was created to solve this. * Decaf point operates in X:Y:Z:T extended coordinates like ExtendedPoint, * but it should work in its own namespace: do not combine those two. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448 */ class DcfPoint implements Group { static BASE: DcfPoint; static ZERO: DcfPoint; // Private property to discourage combining ExtendedPoint + DecafPoint // Always use Decaf encoding/decoding instead. constructor(private readonly ep: ExtendedPoint) {} static fromAffine(ap: AffinePoint) { return new DcfPoint(ed448.ExtendedPoint.fromAffine(ap)); } /** * Takes uniform output of 112-byte hash function like shake256 and converts it to `DecafPoint`. * The hash-to-group operation applies Elligator twice and adds the results. * **Note:** this is one-way map, there is no conversion from point to hash. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-element-derivation-2 * @param hex 112-byte output of a hash function */ static hashToCurve(hex: Hex): DcfPoint { hex = ensureBytes('decafHash', hex, 112); const r1 = bytes448ToNumberLE(hex.slice(0, 56)); const R1 = calcElligatorDecafMap(r1); const r2 = bytes448ToNumberLE(hex.slice(56, 112)); const R2 = calcElligatorDecafMap(r2); return new DcfPoint(R1.add(R2)); } /** * Converts decaf-encoded string to decaf point. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-decode-2 * @param hex Decaf-encoded 56 bytes. Not every 56-byte string is valid decaf encoding */ static fromHex(hex: Hex): DcfPoint { hex = ensureBytes('decafHex', hex, 56); const { d } = ed448.CURVE; const P = ed448.CURVE.Fp.ORDER; const mod = ed448.CURVE.Fp.create; const emsg = 'DecafPoint.fromHex: the hex is not valid encoding of DecafPoint'; const s = bytes448ToNumberLE(hex); // 1. Check that s_bytes is the canonical encoding of a field element, or else abort. // 2. Check that s is non-negative, or else abort if (!equalBytes(numberToBytesLE(s, 56), hex) || isNegativeLE(s, P)) throw new Error(emsg); const s2 = mod(s * s); // 1 const u1 = mod(_1n + s2); // 2 const u1sq = mod(u1 * u1); const u2 = mod(u1sq - _4n * d * s2); // 3 const { isValid, value: invsqrt } = invertSqrt(mod(u2 * u1sq)); // 4 let u3 = mod((s + s) * invsqrt * u1 * SQRT_MINUS_D); // 5 if (isNegativeLE(u3, P)) u3 = mod(-u3); const x = mod(u3 * invsqrt * u2 * INVSQRT_MINUS_D); // 6 const y = mod((_1n - s2) * invsqrt * u1); // 7 const t = mod(x * y); // 8 if (!isValid) throw new Error(emsg); return new DcfPoint(new ed448.ExtendedPoint(x, y, _1n, t)); } /** * Encodes decaf point to Uint8Array. * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-encode-2 */ toRawBytes(): Uint8Array { let { ex: x, ey: _y, ez: z, et: t } = this.ep; const P = ed448.CURVE.Fp.ORDER; const mod = ed448.CURVE.Fp.create; const u1 = mod(mod(x + t) * mod(x - t)); // 1 const x2 = mod(x * x); const { value: invsqrt } = invertSqrt(mod(u1 * ONE_MINUS_D * x2)); // 2 let ratio = mod(invsqrt * u1 * SQRT_MINUS_D); // 3 if (isNegativeLE(ratio, P)) ratio = mod(-ratio); const u2 = mod(INVSQRT_MINUS_D * ratio * z - t); // 4 let s = mod(ONE_MINUS_D * invsqrt * x * u2); // 5 if (isNegativeLE(s, P)) s = mod(-s); return numberToBytesLE(s, 56); } toHex(): string { return bytesToHex(this.toRawBytes()); } toString(): string { return this.toHex(); } // Compare one point to another. // https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-07#name-equals-2 equals(other: DcfPoint): boolean { assertDcfPoint(other); const { ex: X1, ey: Y1 } = this.ep; const { ex: X2, ey: Y2 } = other.ep; const mod = ed448.CURVE.Fp.create; // (x1 * y2 == y1 * x2) return mod(X1 * Y2) === mod(Y1 * X2); } add(other: DcfPoint): DcfPoint { assertDcfPoint(other); return new DcfPoint(this.ep.add(other.ep)); } subtract(other: DcfPoint): DcfPoint { assertDcfPoint(other); return new DcfPoint(this.ep.subtract(other.ep)); } multiply(scalar: bigint): DcfPoint { return new DcfPoint(this.ep.multiply(scalar)); } multiplyUnsafe(scalar: bigint): DcfPoint { return new DcfPoint(this.ep.multiplyUnsafe(scalar)); } double(): DcfPoint { return new DcfPoint(this.ep.double()); } negate(): DcfPoint { return new DcfPoint(this.ep.negate()); } } export const DecafPoint = /* @__PURE__ */ (() => { // decaf448 base point is ed448 base x 2 // https://github.com/dalek-cryptography/curve25519-dalek/blob/59837c6ecff02b77b9d5ff84dbc239d0cf33ef90/vendor/ristretto.sage#L699 if (!DcfPoint.BASE) DcfPoint.BASE = new DcfPoint(ed448.ExtendedPoint.BASE).multiply(_2n); if (!DcfPoint.ZERO) DcfPoint.ZERO = new DcfPoint(ed448.ExtendedPoint.ZERO); return DcfPoint; })(); // Hashing to decaf448. https://www.rfc-editor.org/rfc/rfc9380#appendix-C export const hashToDecaf448 = (msg: Uint8Array, options: htfBasicOpts) => { const d = options.DST; const DST = typeof d === 'string' ? utf8ToBytes(d) : d; const uniform_bytes = expand_message_xof(msg, DST, 112, 224, shake256); const P = DcfPoint.hashToCurve(uniform_bytes); return P; }; export const hash_to_decaf448 = hashToDecaf448; // legacy